COMPUTER SCIENCE ALGORITHM IN PSEUDOCODE # **LESSON OBJECTIVES** Students will learn about: - Role of algorithms in programming - Various statements and structures used in pseudocodes - Various symbols used in flowcharts flowchart algorithm pseudocode - An is generally written using pseudocode or flowcharts. - _____ is a readable description of what a computer program will do. - A _____depicts the steps and order to be followed to perform a task. - Designing a proper _____ plays an important role in the software development process. Pseudocode - An <u>algorithm</u> is generally written using pseudocode or flowcharts. - _____ is a readable description of what a computer program will do. - A ______depicts the steps and order to be followed to perform a task. - Designing a proper _____ plays an important role in the software development process. flowchart algorithm - An algorithm is generally written using pseudocode or flowcharts. - Pseudocode is a readable description of what a computer program will do. - A ______depicts the steps and order to be followed to perform a task. - Designing a proper _____ plays an important role in the software development process. algorithm - An algorithm is generally written using pseudocode or flowcharts. - Pseudocode is a readable description of what a computer program will do. - A <u>flowchart</u> depicts the steps and order to be followed to perform a task. - Designing a proper _____ plays an important role in the software development process. - An <u>algorithm</u> is generally written using pseudocode or flowcharts. - Pseudocode is a readable description of what a computer program will do. - A <u>flowchart</u> depicts the steps and order to be followed to perform a task. - Designing a proper plays an important role in the software development process. # INPUT AND OUTPUT - Computer programs require input from users. - INPUT is used for data entry. - PRINT is used to display a string or a variable. | Pseudocode | Description | |-------------|---| | INPUT Name | Value typed by user is stored into variable 'Name' | | INPUT Price | Value typed by user is stored into variable 'Price' | | PRINT Name | Displays the string stored in Name | | PRINT Price | Displays the value stored in Price | ## **ASSIGNING A VALUE** - The value on the right of the ← operator is assigned to the left. - Mathematical expressions can be used on the right side of the ← operator. # ASSIGNING A VALUE | Pseudocode | Description | |-------------------------|----------------------------| | Name ← "Mike" | Name has the value Mike | | Age ← 32 | Age has the value 32 | | Gender ← "M" | Gender has the value M | | Salary ← 6000 | Salary has the value 6000 | | Expense ← 3500 | Expense has the value 3500 | | Saving ← Salary-Expense | Saving has the value 2500 | # **CONDITIONAL STATEMENTS** Conditional statements are used when different actions need to be performed based on different values of user input. ### CONDITIONAL STATEMENTS If... then... statement IF condition THEN PRINT "Yes" ELSE PRINT "No" ENDIF #### **Case statements** **CASE Choice OF** 1: PRINT "You entered Choice 1" 2: PRINT "You entered Choice 2" 3: PRINT "You entered Choice 3" OTHERWISE PRINT "Not a valid choice" **ENDCASE** ## IF... THEN... STATEMENT OPERATORS FOR COMPARISON | Operator | Comparison | |----------|--------------------------| | < | Less than | | > | Greater than | | == | Equal to | | <= | Less than or equal to | | >= | Greater than or equal to | | != | Not equal to (in Python) | | <> | Not equal to (in SQL) | | () | Group | | AND | Both | | OR | Either | | NOT | Complement | # IF... THEN... WITH ELSEIF STATEMENT | Pseudocode | Description | |--|---| | IF Weight >= 85 THEN PRINT "You are not allowed to enter" ELSEIF Weight >= 75 THEN PRINT "Enter door 1" ELSEIF Weight >=65 THEN PRINT "Enter door 2" ELSE PRINT "Enter door 3" ENDIF | A person is not allowed if weight >= 85 Enters door 1 if 75 <= weight < 85 Enters door 2 if 65 <= weight < 75 Enters door 3 if weight < 65 | # **CASE STATEMENT** | Pseudocode | Description | |--|--| | CASE Choice OF 1: PRINT "You entered Choice 1" 2: PRINT "You entered Choice 2" 3: PRINT "You entered Choice 3" OTHERWISE PRINT "Not a valid choice" ENDCASE | If the value is 1, "You entered Choice 1" will be displayed. If the value is 2, "You entered Choice 2" will be displayed. If the value is 3, "You entered Choice 1" will be displayed. OTHERWISE is the path taken for all other values ENDCASE denotes end of the statement | ## LOOP STATEMENTS Loop statements are used to perform a part of the algorithm multiple times. The repetition of a set of lines is called <u>iteration</u>. ### TYPES OF LOOP STATEMENTS Output FOR... TO... NEXT FOR Counter ← 1 TO 10 PRINT "Welcome" **NEXT** **REPEAT... UNTIL** Counter ← 0 **REPEAT** PRINT "Welcome" Counter ← Counter + 1 UNTIL Counter < 10 WHILE... DO... Counter ← 0 WHILE Counter < 10 DO PRINT "Welcome" Counter ← Counter + 1 **ENDWHILE** Welcome Welcome Welcome Welcome Welcome Welcome Welcome Welcome Welcome ## FLOWCHART SYMBOLS Flowchart symbols are used to represent the start and end of a programme, process, output and decision. #### LET'S REVIEW SOME CONCEPTS #### **INPUT** statement INPUT statement is used for data entry. #### **PRINT** statement PRINT statement is used to display a string or a variable. #### ← Symbol Values are assigned to a variable using the ← operator. #### **Conditional statements** Conditional statements are used when different actions need to be performed based on different values of user input. Types: If... then... and case statements. #### **Loop** statements Loop statements are used to perform a part of the algorithm multiple times. Types of loop statements FOR... TO... NEXT REPEAT... UNTIL WHILE... DO... #### **Flowchart symbols** Flowchart symbols are used to represent the start and end of a program, process, output and decision. # Activity-1 Duration: 20 minutes 1. Software is designed to calculate grades of students according to the marks scored. The grades for marks scored are given in the table. Create the <u>pseudocode</u> and <u>flowchart</u> of the algorithm. | Marks (%) | Grade | |-----------|-------| | 90-100 | A* | | 80-89 | А | | 70-79 | В | | 60-69 | С | | 50-59 | D | | Below 50 | Fail | # **ACTIVITY 1 ANSWER** - 1. Software is designed to calculate grades of students according to the marks scored. The grades for marks scored are given in the table. - 2. Create the pseudocode and flowchart of the algorithm. | Marks (%) | Grade | |-----------|-------| | 90-100 | A* | | 80-89 | Α | | 70-79 | В | | 60-69 | С | | 50-59 | D | | Below 50 | Fail | #### **Pseudocode:** # **ACTIVITY-2** **DURATION: 15 MINUTES** 1. Create a flowchart and pseudocode for an algorithm to calculate factorial of a number. ## **ACTIVITY-2** **DURATION: 15 MINUTES** 1. Create a flowchart and pseudocode for an algorithm to calculate factorial of a number. #### Factorial $$n! = n * (n-1) * (n-2) * (n-3) * \cdots * 3 * 2 * 1$$ END OF TOPIC QUESTIONS # ACTIVITY 1 ANSWER | Marks (%) | Grade | |-----------|-------| | 90-100 | A* | | 80-89 | А | | 70-79 | В | | 60-69 | С | | 50-59 | D | | Below 50 | Fail | # ACTIVITY 2 ANSWER Create a flowchart and pseudocode for an algorithm to calculate factorial of a only number. ``` Pseudocode: Input num count←1 fact←1 While (count<num) Do fact=fact×count count=count+1 endwhile Print fact ``` # **ACTIVITY 2 ANSWER** Create a flowchart and pseudocode for an algorithm to calculate factorial of a number. #### Pseudocode: ``` Input num count←1 fact←1 While (count<num) Do fact=fact×count count=count+1 endwhile Print fact ``` # **ACTIVITY 2 ANSWER** Create a flowchart and pseudocode for an algorithm to calculate factorial of a number. ``` Pseudocode: Input num count←1 fact←1 While (count<num) Do fact=fact×count count=count+1 endwhile Print fact ``` # TAKE NOTE OF CONDITIONAL CASE STATEMENT FORMAT #### **Case statements** #### **CASE** Choice **OF** 1 : PRINT "You entered Choice 1" 2: PRINT "You entered Choice 2" 3: PRINT "You entered Choice 3" **OTHERWISE** PRINT "Not a valid choice" **ENDCASE** - 1. What are input and output statements? Give examples. - 2. What operator is used to assign values to variables? - 3. How are mathematical expressions used in statements assigning values? - 4. What are the different conditional statements? - 5. What is iteration? What are the different iteration statements? - 6. How is a repeat...until... loop different from while...do... loop? # COMPUTER SCIENCE ## FRITZ EUGENE BANSAG Adaptation from teachcomputerscience.com # THANK YOU - fritz.bansag@vas.edu.vn - mail@febstar.com