Compułer Science

Binary search

Lesson Objectives

Students will learn:

- Binary search algorithm
- How is an element searched in a list using a binary search algorithm?
- Pseudocode for a binary search algorithm

KNOWING WHAT YOU KNOW

- Go to: https://joinmyquiz.com
- Write your name and grade level
- Join code:

Content

Searching and sorting algorithms

- Sorting algorithms arrange the data in particular order.
- Searching algorithms are used to search for data in a list.

Binary search algorithm

- When a list is input to a binary search algorithm, the algorithm keeps dividing into half until the item is matched with the one in the list.

Ordered list

- An ordered list is a list of items that are arranged sequentially in a particular order.
- For example: products on an online shopping website are arranged according to their price and files in Windows Explorer are arranged in various orders such as name, size, date and type.
- Binary search algorithms work faster with an ordered list.

Binary search algorithm

Let's us search a file with file name 'Project 625 ' in a folder.

Binary search algorithm: Pseudocode

Let's use an example of searching a file with the name 'Project 625' in a folder using a binary search algorithm.
Setting the variables.

INPUT user inputs 'Project 625' in File explorer
file_name='Project 625'
file_found=FALSE
(file_found turns TRUE only when the match is found)

Binary search algorithm: Pseudocode

Using while loop and if condition to compare the file names.

WHILE file_found = FALSE:
Find the midpoint of the list
IF file_name=record at midpoint of the list THEN
file_found=TRUE
ELSE IF file_name is in the first half of the list THEN discard the second half of the list
ELSE
discard the first half of the list
ENDIF
END WHILE
OUTPUT file_name, file_size, file_data and file_type

Pseudocode

- Let us consider an ordered list with a certain length_of_list.
- lower_bound is the position of first element and upper_bound is the position of last element.
r In the table below, a list of 10 elements is shown. Here the lower_bound is $\mathbf{0}$, upper_bound is 9 and length_of_list is 10.

Position	0	1	2	3	4	5	6	7	8	9
Element	A	B	C	D	E	F	G	H	I	J

Pseudocode

Setting the variables

$$
\begin{aligned}
& \text { item_to_be_found=("enter the item to be found") } \\
& \text { lower_bound=0 } \\
& \text { upper_bound=length_of_list-1 } \\
& \text { item_found=false }
\end{aligned}
$$

- Using while loop to check whether a match has been found.
- Using if condition to compare items

Analysing Pseudocode

- Let us analyse this pseudocode by using some values.
- Let item_to_be_found= G in the ordered list.

Position	0	1	2	3	4	5	6	7	8	9
Element	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{I}	\mathbf{J}

- midpoint $=$ round $((0+9) / 2)=$ round (4.5) $=5$
- list [midpoint] $=$ list [5] = F
- Because list[midpoint] < item, the statement lower_bound=midpoint +1 is executed.

P	0	1	2	3	4	5	6	7	8	9
E	A	B	C	D	E	F	G	H	I	J

while (item_found==false and lower_bound <= upper_bound)
midpoint= round
((lower_bound+upper_bound)/2)
if list[midpoint]=item then
item_found=true
elseif list[midpoint] < item then
lower_bound=midpoint+1
else
upper_bound=midpoint-1
endif
endwhile

- Now the lower_bound becomes 6. The lower half is now discarded. Therefore,

P	6	7	8	9
E	G	H	I	J

- midpoint $=$ round $((6+9) / 2)=$ round (7.5) =8
- list [midpoint] = list [8]= 1
- Because list[midpoint] > item, the statement upper_bound=midpoint - 1 is executed.

```
while (item_found==false and lower_bound <=
upper_bound)
    midpoint= round
    ((lower_bound+upper_bound)/2)
    if list[midpoint]=item then
        item_found=true
    elseif list[midpoint] < item then
        lower_bound=midpoint+1
    else
        upper_bound=midpoint-1
    endif
endwhile
```

- Now the upper_bound becomes 7. The upper half is now discarded. Therefore,

P	6	7
E	G	H

- \quad midpoint $=$ round $((6+7) / 2)=$ round $(6.5)=7$
- list [midpoint]= list [7]= H
- Because list[midpoint] > item, the statement upper_bound=midpoint -1 is executed.
while (item_found==false and lower_bound <= upper_bound)
midpoint= round
((lower_bound+upper_bound)/2)
if list[midpoint]=item then
item_found=true
elseif list[midpoint] < item then
lower_bound=midpoint+1
else
upper_bound=midpoint-1
endif
endwhile
- Now the upper_bound becomes 6. The upper half is now discarded. Therefore,

P	6
E	G

- \quad midpoint $=$ round $((6+6) / 2)=$ round $(6)=6$
- list[midpoint]= list $[6]=\mathrm{G}$, the statement item_found =true is executed.
while (item_found==false and lower_bound <= upper_bound)
midpoint= round
((lower_bound+upper_bound)/2)
if list[midpoint]=item then item_found=true elseif list[midpoint] < item then lower_bound=midpoint+1
else
upper_bound=midpoint-1
endif
endwhile

Analysing Pseudocode

- The while loop ends, and the output is: item found at 6

```
if (item_found==true) then
        print ("item found at ", midpoint)
else
    print ("item not present")
endif
```


KNOWING WHAT YOU LEARNED

- Go to: https://joinmyquiz.com
- Write your name and grade level
- Join code:

Activity

Activity-1

Duration: 15 minutes

1. Here is a list of 9 elements.

Position	0	1	2	3	4	5	6	7	8
Element	\mathbf{P}	\mathbf{Q}	\mathbf{R}	\mathbf{S}	\mathbf{T}	\mathbf{U}	\mathbf{V}	\mathbf{W}	\mathbf{X}

User wants to search the element P from the above list. What steps are followed in a binary search algorithm to find out P from the above list?

Activity-1

1. Here is a list of 9 elements.

User wants to search the element P from the above list. What steps are followed in a binary search algorithm to find out P from the above list?

End of topic questions

End of topic questions

1. Using the pseudocode of a binary search algorithm, create a flowchart for this algorithm.
item_to_be_found=("enter the item to be found") lower_bound=0
upper_bound=length_of_list-1
item_found=false
while (item_found==false and lower_bound <= upper_bound)
midpoint= round
((lower_bound+upper_bound)/2)
if list[midpoint]=item then
item_found=true
elseif list[midpoint] < item then
lower_bound=midpoint+1
else
upper_bound=midpoint-1
endif
endwhile

End of topic questions

2. How is a binary search algorithm different from a linear search algorithm?
