
Bubble sort

Computer Science

Students will learn:

▪ Bubble sort algorithm

▪ How is a list sorted using bubble sort algorithm?

▪ Pseudocode for bubble sort algorithm

Lesson Objectives

2

▪ Go to:
https://joinmyquiz.com

▪ Write your name and grade level

▪ Join code: _______________

KNOWING WHAT YOU KNOW

https://joinmyquiz.com/

Content

1.

▪ Sorting algorithms arrange the data in particular order.

▪ Searching algorithms are used to search for data in a list.

Searching and sorting
algorithms

5

▪ An example of list is:

List

6

Position 0 1 2 3 4 5

Item C A D F E B

Bubble sort algorithm

7

The first item
is taken and
stored as a

current item.

The
current
item is

compare
d with

the next
item.

If the
current

item and
the next
item are

out of
order, the
items are
swapped.

Steps 2 to 3
are

repeated for
the next

items in the
list until the
last item is

reached.

If swapping
was

performed
in any of

the steps,
repeat the
steps from
1. Else, the

list is
sorted.

An algorithm used to order a list in correct order.

▪ Bubble sort algorithm is inefficient.

▪ We will discuss insert sort and merge sort which are more efficient than

bubble sort algorithm in the next lesson.

Bubble sort algorithm

8

▪ Let us understand bubble sort using a simple example of numbered list.

▪ Consider the list of number: 6, 5, 4, 3, 10

Bubble sort: Example

9

i. 6, 5, 4, 3, 10

6 >5 so the numbers are swapped.

ii. 5, 6, 4, 3, 10

6 >4 so the numbers are swapped.

iii. 5, 4, 6, 3, 10

6 >3 so the numbers are swapped.

iv. 5, 4, 3, 6, 10

6 < 10 so the list remains the same.

As this pass had swapping of numbers, this list enters in to a second loop.

Bubble sort: First pass

10

i. 5, 4, 3, 6, 10

5>4 so the numbers are swapped.

ii. 4, 5, 3, 6, 10

5>3 so the numbers are swapped.

iii. 4, 3, 5, 6, 10

5<6 so the list remains the same.

iv. 4, 3, 5, 6, 10

6<10 so the list remains the same.

As this pass had swapping of numbers, this list enters in to a third loop.

Bubble sort: Second pass

11

i. 4, 3, 5, 6, 10

4>3 so the numbers are swapped.

ii. 3, 4, 5, 6, 10

4<5 so the list remains the same.

iii. 3, 4, 5, 6, 10

4<5 so the list remains the same.

iv. 3, 4, 5, 6, 10

6<10 so the list remains the same.

Bubble sort: Third pass

12

▪ As this pass had swapping of numbers, this list enters into a fourth loop.

▪ In the fourth time there will be no swapping and, hence, the list is ordered

and output is produced.

Bubble sort: Fourth pass

13

▪ We require a variable to know whether swapping has been

performed.

▪ This is because the algorithm ends only when no swapping has

been performed.

▪ So, a variable swapflag is used to determine whether swapping

has been performed. Initially, it is set as true.

Bubble sort algorithm:
Pseudocode

14

swapflag=true

▪ In a while loop, the value of swap

flag is checked.

▪ Inside the loop, this value is initially

set to be false.

▪ Using a for loop, all the elements are

compared with its next element.

▪ The elements at position 0 and

position 1 are checked and swapped

if required.

Bubble search algorithm:
Pseudocode

15

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

position = position +1

NEXT position

END WHILE

▪ If swapped, the swapflag is set as true.

▪ Now the elements at position 1 and

position 2 are checked and swapped if

required.

▪ This for loop continues until all the

elements have been checked.

▪ The while loop ends only if the

swapflag is false. It means that no

swapping has taken place in the for

loop.

Bubble search algorithm:
Pseudocode

16

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 NEXT position

position = position +1

END WHILE

▪ Let us analyse this pseudocode with an example. Let us consider a list:

▪ Each for loop is denoted as a step.

Analysing pseudocode

17

Position 0 1 2 3 4 5

Item C A D F E B

1st For loop

18

i. swapflag= false

Comparing items at position 0 and 1.

Swapping is required. C and A are

swapped.

Swapflag=true

Position=1

19

Position 0 1 2 3 4 5

Item C A D F E B

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

ii. Comparing items at position 1 and

2.

Swapping is not required.

Position=2

20

Position 0 1 2 3 4 5

Item A C D F E B

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

position = position +1

NEXT position

END WHILE

iii. Comparing items at position 2 and

3.

Swapping is not required.

Position=3

21

Position 0 1 2 3 4 5

Item A C D F E B

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

iv. Comparing items at position 3 and

4.

Swapping is required. F and E are

swapped

Swapflag=true

Position=4

22

Position 0 1 2 3 4 5

Item A C D F E B

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

v. Comparing items at position 4 and

5.

Swapping is required. F and B are

swapped

Swapflag=true

Position=5

23

Position 0 1 2 3 4 5

Item A C D E F B

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

Because the swapflag is set true in some of

these steps. The for loop is executed once

again.

24

Position 0 1 2 3 4 5

Item A C D B E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

2nd For loop

25

i. swapflag= false

Comparing items at position 0 and 1.

Swapping is not required.

Position=1

26

Position 0 1 2 3 4 5

Item A C D B E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

ii. Comparing items at position 1 and 2.

Swapping is not required.

Position=2

27

Position 0 1 2 3 4 5

Item A C D B E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

iii. Comparing items at position 2 and

3.

Swapping is required. D and B are

swapped.

Swapflag=true

Position=3

28

Position 0 1 2 3 4 5

Item A C D B E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

iv. Comparing items at position 3 and

4.

Swapping is not required.

Position=4

29

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

v. Comparing items at position 4 and

5.

Swapping is not required.

Position=5

30

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

Again, in this set of steps, swapflag is set true

in step 3. These set of sets are again repeated

in for loop.

31

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

3rd For loop

32

i. swapflag=false

Comparing items at position 0 and 1.

Swapping is not required.

Position=1

33

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

ii. Comparing items at position 1 and 2.

Swapping is required. C and B are

swapped.

Swapflag=true

Position=2

34

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

iii. Comparing items at position 2 and 3.

Swapping is not required.

Position=3

35

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

iv. Comparing items at position 3 and 4.

Swapping is not required.

Position=4

36

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

v. Comparing items at position 4 and 5.

Swapping is not required.

Position=5

37

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

▪ Again, in this set of steps, swapflag is

set true in step 2.

▪ Even though the list is now sorted,

these set of sets are again repeated

in for loop.

38

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

4th For loop

39

i. swapflag=false

Comparing items at position 0 and 1.

Swapping is not required.

Position=1

40

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

ii. Comparing items at position 1 and 2.

Swapping is not required.

Position=2

41

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

iii. Comparing items at position 2 and 3.

Swapping is not required.

Position=3

42

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

iv. Comparing items at position 3 and 4.

Swapping is not required.

Position=4

43

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

v. Comparing items at position 4 and 5.

Swapping is not required.

Position=5

44

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

▪ In this final set of for loop, the

swapflag has not been set true.

▪ Hence, the while loop ends and the

output of this pseudocode is the

sorted list.

▪ It is important to remember that

characters can be compared using

their ASCII codes.

45

Position 0 1 2 3 4 5

Item A C B D E F

swapflag=true

WHILE swapflag==true

swapflag= false

position = 0

FOR position = 0 to length_of_list-2

compare (current_item, next_item)

IF (current_item > next_item)

swap (current_item, next_item)

swapflag=true

ENDIF

 position = position +1

NEXT position

END WHILE

Activity

2.

1. Analyse in detail how the following list of numbers are sorted using

bubble sort algorithm.

Activity-1
Duration: 15 minutes

47

4 9 8 1 6 5

▪ Go to:
https://joinmyquiz.com

▪ Write your name and grade level

▪ Join code: _______________

KNOWING WHAT YOU LEARNED

https://joinmyquiz.com/

End of topic questions

3.

1. What is a bubble sort algorithm used for?

2. How does a bubble sort algorithm work?

3. For the given list, how does the bubble sort algorithm work?

Explain briefly.

4. What is the purpose of the last pass in the bubble sort algorithm?

End of topic questions

50

F R G E A U

5. How many maximum comparisons and swaps take place to

sort a list of 6 numbers using bubble sort algorithm? Show

your working.

End of topic questions

51

Teach Computer Science

CREDIT

	Slide 1: Computer Science
	Slide 2: Lesson Objectives
	Slide 3: KNOWING WHAT YOU KNOW
	Slide 4: Content
	Slide 5: Searching and sorting algorithms
	Slide 6: List
	Slide 7: Bubble sort algorithm
	Slide 8: Bubble sort algorithm
	Slide 9: Bubble sort: Example
	Slide 10: Bubble sort: First pass
	Slide 11: Bubble sort: Second pass
	Slide 12: Bubble sort: Third pass
	Slide 13: Bubble sort: Fourth pass
	Slide 14: Bubble sort algorithm: Pseudocode
	Slide 15: Bubble search algorithm: Pseudocode
	Slide 16: Bubble search algorithm: Pseudocode
	Slide 17: Analysing pseudocode
	Slide 18: 1st For loop
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: 2nd For loop
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: 3rd For loop
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: 4th For loop
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Activity
	Slide 47: Activity-1 Duration: 15 minutes
	Slide 48: KNOWING WHAT YOU LEARNED
	Slide 49: End of topic questions
	Slide 50: End of topic questions
	Slide 51: End of topic questions
	Slide 52: CREDIT

