
Computer Science

▪ Understand what’s the difference?

▪ How can you use them to make your program robust.

FUNCTION VS PROCEDURE

Lesson Objectives

▪ Understand what CASE selection is done in Python

▪ Implement Case Selection and understand how can you use them to make a
program robust.

CASE Statement

#Procedure in Python:

def greet(name):

print("Hello, " + name + "!")

greet("Alice")

Output:

???

In the above example, the greet procedure takes a parameter name and prints a
greeting message. It doesn't return any value.

PYTHON FUNCTION VS PROCEDURE

#Procedure in Python:

def greet(name):

print("Hello, " + name + "!")

greet("Alice")

Output:

Hello, Alice!

In the above example, the greet procedure takes a parameter name and prints a
greeting message. It doesn't return any value.

PYTHON FUNCTION VS PROCEDURE

Function Call in Python that returns a value

def add_numbers(a, b):

return a + b

This will return a value of the function call.

print("Please enter your first number: ")

a=int(input())

print("Please enter your second number: ")

b=int(input())

result = add_numbers(a, b)

print("\nThe result is: ", result)

In the above example, the add_numbers function takes two parameters a and b, adds them together,
and returns the sum.

PYTHON FUNCTION VS PROCEDURE

Function Call in Python that returns a value

def add_numbers(a, b):

return a + b

This will return a value of the function call.

print("Please enter your first number: ")

a=int(input())

print("Please enter your second number: ")

b=int(input())

result = add_numbers(a, b)

print("\nThe result is: ", result)

In the above example, the add_numbers function takes two parameters a and b, adds them together,
and returns the sum.

PYTHON FUNCTION VS PROCEDURE

▪ How can I make a CASE statement in Python?

CASE STATEMENT

▪ Using FUNCTION to switch between each choice.

CASE STATEMENT

▪ Implementing a CASE Choice

CASE STATEMENT

▪ Implementing a CASE Choice

CASE STATEMENT

Data structures

Teach Computer Science

Students will learn:

▪ Why variables are not enough in real-life programming

▪ What are data structures?

▪ What are arrays?

▪ Accessing arrays using Python programming language

Lesson Objectives

12

Content

1.

▪ The primary purpose of a computer system is to process data. The data can

be of any type.

▪ If a computer program needs to process one piece of data, then that data can

be stored in a variable and the resultant data can be stored in another

variable. In this case, a couple of variables are sufficient to write a program.

▪ But real-life programs need to handle tens of thousands of pieces of data. To

handle large amounts of data, it is impossible to store each piece data in a

separate variable.

Why variables are not
enough?

14

▪ Because variables cannot be used for real-life programming, data is

grouped together or, more precisely, structured in a specific format.

▪ The collection of data structured together is called a data structure.

Data structure

15

16
Characteristic Description Examples

Linear
In linear data structures, the data items are arranged in

a linear sequence.
Array

Non-Linear
In non-linear data structures, the data items are not in

sequence.
Tree, Graph

Homogeneous
In homogeneous data structures, all the elements are

of the same type.
Array

Non-

homogeneous

In non-homogeneous data structures, the elements

may or may not be of the same type.
Structures

Static

Static data structures are those whose size and

structure-associated memory locations are fixed at

compile time.

Array

Dynamic

Dynamic structures are that which expand or shrink

depending upon the program’s needs and its execution.

Also, their associated memory locations change.

Linked List

▪ Arrays are a form of data structure used to store a set of data

elements in a certain order.

▪ All the data elements should be of the same data type.

▪ An array can store a set of integer values or a set of character strings.

Arrays

17

▪ Each element of an array is stored in

memory as per their order.

▪ This is a one-dimensional array, as the

array has only one list.

▪ If the minimum, maximum and

average temperature for each nation

needs to be included, then there will

be another list for each data element.

Arrays

18

Country name

Afghanistan 1

Albania 2

Algeria 3

USA 4

Andorra 5

Array name
Data elements

Index

Two-dimensional
arrays

19

Country name, Max. Min.
and Avg. temperatures

Afghanistan 40 20 32

Albania 38 28 35

Algeria 44 25 38

USA 38 2 30

Andorra 36 14 32

Column
Row

▪ In Python, the array module is initiated from the Python library.

▪ The syntax of declaring an array is:

Array_name=array.array(“type code”, range(number of elements)).

Declaring arrays in Python

20

▪ Let us create an array with the

name ProductPrice to enter the

price of various products.

▪ Let us assume that there are ten

products in total.

▪ NofItems is a constant with a

value of 10.

▪ An array starts with element 0.

Declaring arrays

21

import array

NofItems=int(10)

k=0

ProductPrice=array.array('i', range(NofItems))

▪ Data is entered into the array ProductPrice created by using iteration

statements.

▪ A value k is initiated to zero. In the loop, the value of k is incremented

every time. The value of k is the index to the array.

▪ Similarly, using an iteration statement, the elements of this array is

printed.

Using arrays in Python

22

▪ The program for

entering data and

printing it to and from

the array ProductPrice

is given.

▪ For loop can also be

used in this program.

Example

23

import array

NumberofItems=int(10)

k=0

ProductPrice=array.array('i', range(NumberofItems))

while (k<10):

 ProductPrice[k]=int(input("Enter the product price: "))

 k=k+1

k=0

print(""The product prices are: ")

while (k<10):

 print(ProductPrice[k])

 k=k+1

24

import array

NumberofItems=int(10)

k=0

ProductPrice=array.array('i', range(NumberofItems))

while (k<10):

 ProductPrice[k]=int(input("Enter the product price: "))

 k=k+1

k=0

print(""The product prices are: ")

while (k<10):

 print(ProductPrice[k])

 k=k+1

▪ Two-dimensional arrays are created by nesting two while loops or two for
loops.

▪ Arrays can also be created using program statements.

▪ An one-dimensional array is created by:

Array_name=[10, 11, 12, 13, 14]

▪ A two-dimensional array is created by:

Array_name=[[1, 2, 3, 4], [5, 6, 7, 8]]

▪ The elements 1, 2, 3 and 4 represent a row in the two-dimensional array.

Creating two-dimensional
arrays

25

import array

Array_2d = [[10, 2, 15, 12], [3, 12 ,8], [10, 8, 12, 5], [12,15,8,6]]

for row in Array_2d:

for element in row:

print(element, end = " ")

print()

Accessing elements in two-
dimensional arrays

26

import array

Array_2d = [[10, 2, 15, 12], [3,

12 ,8], [10, 8, 12, 5], [12,15,8,6]]

for row in Array_2d:

for element in row:

print(element, end = " ")

print()

Accessing elements in two-
dimensional arrays

27

▪ The print() statement is used to print each

row in a different line.

▪ The statement end=“ ” makes sure that all

elements in a row are printed in the same

line with a space between each element.

import array

Array_2d = [[10, 2, 15, 12], [3, 12 ,8], [10, 8, 12,

5], [12,15,8,6]]

for row in Array_2d:

for element in row:

print(element, end = " ")

print()

Accessing elements in two-
dimensional arrays

28

Output:

len() function for two-
dimensional arrays

29

▪ Number of elements in an array can be

found out using len function.

▪ 1D array: len function returns the

number of elements directly.

▪ 2D array: len function returns the

number of rows first. To obtain the

number of columns of a 2D array, the

row number must be specified.

Modifying elements of an
array

30

▪ Elements of an array can be modified.

▪ In pseudocode, the statement

Array_2d[1][3]=15 is replaced by

Array_2d[1][3] ← 15.

1. Write a Python program to

create an array holding 10

elements. Ask the user to

enter a number into the

array. Use two different

arrays to store even and

odd numbers separately

and print them.

Activity-1
Duration: 20 minutes

31

32

1. Write a Python program to create

an array holding 10 elements. Ask

the user to enter a number into

the array. Use two different arrays

to store even and odd numbers

separately and print them.

Tuple

▪ Records with
elements of different
data types.

▪ The elements cannot
be changed.

▪ The length of tuple is
fixed.

▪ Static data structure.

List

▪ Elements with different
data structure.

▪ The elements can be
changed.

▪ Variable number of
fields.

▪ Dynamic data structure.

Records

33

Array

▪ Data structures with
elements of the same
data type.

▪ The elements can be
changed.

▪ Fixed number of
fields.

▪ Static data structure.

▪ A data structure that may consist of elements with different data

types and variable number of fields.

▪ Each field in a record is identified using a specific name.

▪ The elements of a record are related to each other.

Records

34

▪ Tuples are represented with brackets (). The Python code that

creates a tuple is:

▪ tuple_a is a zero-element tuple.

▪ To create a tuple with one element, the Python code used is:

Tuples

35

Use a comma after the element in

tuple so that Python recognises this

variable as a tuple.

▪ Groups of data are stored in Python using the code:

▪ Different data elements are packed together in a tuple.

▪ These data elements can be unpacked too.

Tuples

36

▪ Consider a tuple, student1=(1, ‘Alice’, ‘Engineering’).

▪ Unpacking a tuple in Python:

Tuples: unpacking

37

▪ len function is used to find the length of tuples.

▪ Individual values can be accessed from tuples as we did for

arrays.

▪ An index value of -1 returns the last item in tuple.

Tuples: len() function

38

▪ The ‘in’ operator is used to check whether an item exists in a

tuple or not.

Tuples: ‘in’ operator

39

▪ Dynamic data structures.

▪ Their values can be changed.

▪ Square brackets are used to

create lists.

▪ Unlike tuples, the data items

can be changed in lists.

Lists

40

Data structure

The collection of data
structured together in a specific
format is called data structure

Arrays

Arrays are a form of data

structure used to store a set of

data elements in a certain

order.

Declaring arrays in Python

In Python, the array module is
initiated from the Python library.
The syntax of declaring an array
is:

Array_name=array.array(“type
code”, range(number of
elements))

Let’s review some

concepts

41

Creating one-dimensional
array using program
statements

A one-dimensional array is
created by:

Array_name=[elements]

Creating two-dimensional
array using program
statements

A two-dimensional array is
created by:

Array_name=[[elements in row
1], [elements in row 2] and so on]

Records

A data structure that may consist
of elements with different data
structure and variable number of
fields.

Implemented in Python using an
array, tuple or list.

Activity

2.

1. Create a tuple. Write a Python program to find the number of

elements in a tuple.

2. Create a tuple with five elements (both integer and string). Write a

Python program to find out whether an item (integer and string)

exists in a tuple or not.

3. Create a tuple of at least three elements. Write a Python program

to unpack the tuple and print the elements.

Activity-2
Duration: 15 minutes

43

1. Create a tuple. Write a Python program to find the number of

elements in a tuple.

Activity-2
Duration: 15 minutes

44

2. Create a tuple with five elements (both integer and string). Write a

Python program to find out whether an item (integer and string)

exists in a tuple or not.

Activity-2
Duration: 15 minutes

45

3. Create a tuple of at least three elements. Write a Python program

to unpack the tuple and print the elements.

Activity-2
Duration: 15 minutes

46

End of topic questions

3.

1. What is data structure? What is its significance in programming?

2. What are arrays? How is the data stored in memory?

3. How are arrays declared in Python?

4. How is data in arrays accessed?

5. How do you create a two-dimensional array using Python?

End of topic questions

48

6. How are elements of a two-dimensional array printed? Explain

using an example.

7. In the following statement, what is the significance of end=“ ” ?

while (j<10):

print(array[j], end = " ")

8. What are the differences between arrays and tuples?

9. What are the differences between tuples and lists?

End of topic questions

49

▪ TEACH COMPUTER SCIENCE

Credit

	Slide 1: Computer Science
	Slide 2: FUNCTION VS PROCEDURE
	Slide 3: PYTHON FUNCTION VS PROCEDURE
	Slide 4: PYTHON FUNCTION VS PROCEDURE
	Slide 5: PYTHON FUNCTION VS PROCEDURE
	Slide 6: PYTHON FUNCTION VS PROCEDURE
	Slide 7: CASE STATEMENT
	Slide 8: CASE STATEMENT
	Slide 9: CASE STATEMENT
	Slide 10: CASE STATEMENT
	Slide 11: Data structures
	Slide 12: Lesson Objectives
	Slide 13: Content
	Slide 14: Why variables are not enough?
	Slide 15: Data structure
	Slide 16
	Slide 17: Arrays
	Slide 18: Arrays
	Slide 19: Two-dimensional arrays
	Slide 20: Declaring arrays in Python
	Slide 21: Declaring arrays
	Slide 22: Using arrays in Python
	Slide 23: Example
	Slide 24
	Slide 25: Creating two-dimensional arrays
	Slide 26: Accessing elements in two-dimensional arrays
	Slide 27: Accessing elements in two-dimensional arrays
	Slide 28: Accessing elements in two-dimensional arrays
	Slide 29: len() function for two-dimensional arrays
	Slide 30: Modifying elements of an array
	Slide 31: Activity-1 Duration: 20 minutes
	Slide 32
	Slide 33: Records
	Slide 34: Records
	Slide 35: Tuples
	Slide 36: Tuples
	Slide 37: Tuples: unpacking
	Slide 38: Tuples: len() function
	Slide 39: Tuples: ‘in’ operator
	Slide 40: Lists
	Slide 41: Let’s review some concepts
	Slide 42: Activity
	Slide 43: Activity-2 Duration: 15 minutes
	Slide 44: Activity-2 Duration: 15 minutes
	Slide 45: Activity-2 Duration: 15 minutes
	Slide 46: Activity-2 Duration: 15 minutes
	Slide 47: End of topic questions
	Slide 48: End of topic questions
	Slide 49: End of topic questions
	Slide 50: Credit

