COMPUTER SCIENCE

ALGORITHM IN PSEUDOCODE TRACE TABLES

LESSON OBJECTIVES

Students should be able to:

- Understand what trace table is
- Create trace table in a pseudocode problem
- Revision on Pseudocodes

KNOWING WHAT YOU KNOW

Go to:

https://joinmyquiz.com

- You are to write your real name and grade.
- Example: Thanh 10GX

Trace table is a thorough structured approach to find out the purpose of algorithm

It involves recording and studying the results from each step in the algorithm and requires the use of test ____.

Trace table is a thorough structured approach to find out the purpose of _____m.

It involves recording and studying the results from each step in the algorithm and requires the use of test ____.

Trace table is a thorough structured approach to find out the purpose of algorithm

It involves recording and studying the results from each step in the algorithm and requires the use of test ____.

Trace table is a thorough structured approach to find out the purpose of algorithm

It involves recording and studying the results from each step in the algorithm and requires the use of test $\frac{data}{data}$.

C

 \bigcirc

 \bigcirc

 \bigcap

Consider the algorithn represented by th			Trace Table		
flowchart.	Test D	ata X:	. 9,7,3,12,6,4,15,2,8,5		
Α	В	С	X	OUTPUT	
0	0	100			
1	9	9			
2					
3					
4					
5					
6					
7					
8					
9					
10				B=ṡ C= ṡ	

C

С

 \bigcirc

 \bigcap

Consider the algorith represented by the test of the second secon			Trace Table			
flowchart.	Test D	ata X:	9,7,3,12,6,4,15,2,8,5			
Α	В	С	X	OUTPUT		
0	0	100				
1	9	9				
2						
3						
4						
5						
6						
7						
8						
9						
10				15 2		

Trace Table 🕛

Consider the algorithm represented by the flowchart.

S

Consider the algorithm represented by the pseudocode.

Trace Table III

$A \leftarrow 0$
B ← 0
C ← 100
OUTPUT "Enter your ten values"
REPEAT
INPUT X
IF X > B
THEN
$B \leftarrow X$
ENDIF
IF X < C
THEN
$C \leftarrow X$
ENDIF
$A \leftarrow A + 1$
UNTIL A = 10
OUTPUT B, C

Α	В	С	X	OUTPUT
0	0	100		Enter your ten values
1	400		400	
2				
3				
4				
5				
6				
7				
8				
9				
10				
				B=š C=š

Consider the algorithm represented by the preudocode.

Trace Table 12

$A \leftarrow 0$
B ← 0
C ← 100
OUTPUT "Enter your ten values"
REPEAT
INPUT X
IF X > B
THEN
$B \leftarrow X$
ENDIF
IF X < C
THEN
$C \leftarrow X$
ENDIF
$A \leftarrow A + 1$
UNTIL A = 10
OUTPUT B, C

Α	В	С	X	OUTPUT
0	0	100		Enter your ten values
1	400		400	
2	800		800	
3			190	
4			170	
5			300	
6			110	
7			600	
8			150	
9			130	
10			900	
				900 100

Consider the algorithm represented by the preudocode.

Trace Table 13

	$A \leftarrow 0$		Test Data
	B ← 0	1	
1	C ← 100		Α
C	OUTPUT "Enter your ten values"		0
	REPEAT		
	INPUT X		1
	IF X > B		2
	THEN		3
٢	$B \leftarrow X$		4
	ENDIF		E.
ς	IF X < C		5
	THEN		6
	$C \leftarrow X$		7
	ENDIF		
	A ← Did you notic	e	any erroi
	UNTIL A = 10		10
	OUTPUT B, C		

Α	В	С	X	OUTPUT
0	0	100		Enter your ten values
1	400		400	
2	800		800	
3			190	
4			170	
5			300	
6			110	
7			600	
			150	
e any errors a	?		130	
10			900	
				900 100

Consider the algorithm represented by the preudocode.

Trace Table 14

ł	$A \leftarrow 0$		Test Data
	B ← 0		
1	C ← 100		Α
Ċ	OUTPUT "Enter your ten values"		0
	REPEAT		0
	INPUT X		1
	IF X > B		2
	THEN		3
٢	$B \leftarrow X$		4
C	ENDIF		5
ς	IF X < C		5
	THEN		6
	$C \leftarrow X$		7
	ENDIF		
	$A \leftarrow$ There is an error, as 110) , ł	nas not b
	UNTIL A = 10		10
	OUTPUT B, C		

Α	В	С	X	OUTPUT
0	0	100		Enter your ten values
1	400		400	
2	800		800	
3			190	
4			170	
5			300	
6			110	
7			600	
			150	
nas not bee	n identified		130	
10			900	
				900 100

UNIT REVISION

- Let's start by doing theoretical revision on algorithm in pseudocode and flowcharts.
- Please go to: <u>https://joinmyquiz.com</u>
 - □ Use your real name and grade.

COMPUTER SCIENCE

FRITZ EUGENE BANSAG

Adaptation from

teachcomputerscience.com

THANK YOU

 \cap

Ó

- fritz.bansag@vas.edu.vn
- mail@febstar.com